0
ENERGY BALANCE
5.1    INTRODUCTION
Energy can exist in several forms: heat, mechanical energy, electrical energy, e.t.c. As with mass, energy can be considered to be separately conserved in all but nuclear processes. The conservation of energy, however, differs from that of mass in that energy can be generated (or consumed) in a chemical process. Material can change form, new molecular species can be formed by chemical reaction, but the total mass flow into a process unit must be equal to the flow out at the steady state. The same is not true of energy. The total enthalpy of the outlet streams will not equal that of the inlet streams if energy is generated or consumed in the processes; such as that due to heat of reaction. Talking of energy conservation, it is the total energy that is conserved (Sinnott, 2005). When a process is maintained isothermal, only a material balance is needed to describe the process, unless it is also required to know the net heat transfer for maintaining a constant temperature (Stanley, 1990). 

In process design, energy balances are made to determine the energy requirements of the process: the heating, cooling and power required. In plant operation, an energy balance (energy audit) on the plant will show the pattern of energy usage, and suggest areas for conservation and savings. Energy balances can identify equipment with a high energy requirement or large surplus of energy to be removed.
5.2    CONSERVATION OF ENERGY
    A general equation can be written for the conservation of energy:
Energy out = Energy in + generation   ̶  consumption  ̶   accumulation
This is a statement of the first law of thermodynamics. An energy balance can be written for any process step. Chemical reaction will evolve energy (exothermic) or consume energy (endothermic). For steady-state processes the accumulation of both mass and energy will be zero.
Energy can exist in many forms and this, to some extent, makes an energy balance
more complex than a material balance.
5.3    HEATS OF REACTION.
If a process involves chemical reaction, heat will normally have to be added or removed. The amount of heat given out in a chemical reaction depends on the conditions under which the reaction is carried out. The standard heat of reaction (ΔHor) is the heat released when the reaction is carried out under standard conditions: pure components, 1 atm (1.01325bar), temperature usually, but not necessarily, 25oC. (Sinnott, 2005)
5.4    HEATS OF FORMATION.
The standard enthalpy of formation (ΔHof) of a compound is defined as the enthalpy change when one mole of the compound is formed from its constituent elements in the standard state. The standard heat of any reaction can be calculated from the heats of formation, -ΔHof of the products and reactants; if these are available or can be estimated. The relationship between standard heat of reaction and formation is given by: (Sinnott, 2005).
      ΔHor = ∑ ΔHof products - ∑ΔHof reactants           .........................................................................(5.1)
Where
ΔHof (KJ/day) = Amount (kmol/day) x ΔHof (kJ/kmol)     ........................................................(5.2)
and
                       Amount =Mass/(Molecular weight)     ...........................................................................(5.3)
A scale-up factor of 5.8976 is used to multiply all masses of components. This was obtained from the calculation done in chapter four.  This means that all the masses calculated for the material balance were computed based on the basis chosen.
               ∴Mass=Mass basis ×5.8976   ......................................................................... (5.4)
 To convert from kcal/mol to kJ/mol,
     1 kcal/mol = 4.1868 kJ/mol
                      = 4.1868 x 1000 kJ/kmol
                      = 4186.8 kJ/kmol
The values obtained for the heat of reaction are divided by operational time of 8 hours to obtain heat of reaction in kJ/hr. The table below shows the heats of formation of the compounds involved in the material balance equations.
Table 5.1 Heats of Formation of some Compounds at 25oC
Compound    Heat of Formation, ΔHor      (kcal/mol)
Al(OH)3    -304.8000
Al2(SO4)3.18H20    -2120.0000
Ca(HCO3)2    -460.1300
Ca(OCl)2    -92.6000
Ca(OH)2    -235.5800
CaCl2    -190.6000
CaCO3    -289.5000
CaSO4    -336.5800
CO2    -94.0520
Fe(HCO3)2    -303.5200
Fe(OH)3    -197.3000
H2O    -68.3174
H2S    -4.7700
Compound    Heat of Formation, ΔHor      (kcal/mol)
HClO    -28.1800
Mg(HCO3)2    -332.1600
Mg(OH)2    -221.9000
MgCl2    -189.7600
MgSO4    -325.4000
Mn(HCO3)2    -317.5400
Mn2O3.H2O    -222.9000
Na2CO3    -275.1300
Na2SO4    -330.8200
NaCl    -97.3240
O2    0.0000
SO2    -70.94000
Source: (Perry, et al., 1997; Robert,1974) .

5.5    ENERGY BALANCE OVER LIME DOSING AND AERATOR
    The reactions that take place at the point of slaked lime - water dosing and at the aerator are combined.
5.5.1    Energy Balance for Iron Bicarbonate Removal
4Fe(HCO3)2(aq) + O2(g) + 4Ca(OH)2(aq) → 4Fe(OH)3(c)↓ + 4CaCO3(c)↓+ 4CO2(g) + 2H2O(l)
Table 5.2 Energy balance for iron bicarbonate removal
    Reactants                   
Component    mass (basis), kg/day    mass, kg/day    molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof,
kJ/kmol    Hof,
kJ/day
Fe(HCO3)2    237.7620    1402.2252    178.0    7.8777    -303.5200    -1270777.5360    -10010765.4381
O2    10.6859    63.0212    32.0    1.9694    0.0000    0.0000    0.0000
Ca(OH)2    98.8449    582.9477    74.0    7.8777    -235.5800    -986326.3440    -7769954.8131
                        ∑∆Hof reactants  = -17780720.2511
    Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof,
kJ/kmol   
ΔHof,
kJ/day
Fe(OH)3    142.9243    842.9104    107.0    7.8777    -197.3000    -826055.6400    -6507391.1217
CaCO3    133.5742    787.7672    100.0    7.8777    -289.5000    -1212078.6000    -9548357.6723
CO2    58.7726    346.6173    44.0    7.8777    -94.0520    -393776.9136    -3102042.8406
H2O    12.0217    70.8992    18.0    3.9388    -68.3174    -286031.2903    -1126632.4079
                        ∑∆Hof products = -20284424.0425

      ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = –20,284,424.0425 kJ/day – (–17,780,720.2511 kJ/day)
          = – 2,503,703.7914 kJ/day
          = – 312962.9739 kJ/hr

5.5.2    Energy Balance for Manganese Bicarbonate Removal
4Mn(HCO3)2(aq) + O2(g) + 4Ca(OH)2(aq) → 2Mn2O3∙H2O(c)↓ + 4CaCO3(c)↓+ 4CO2(g) + 2H2O(l)
Table 5.3 Energy balance for manganese bicarbonate removal
    Reactants                   
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof,
kJ/kmol    ΔHof,
kJ/day
Mn(HCO3)2    29.9700    176.7511    177.0    0.9986    -332.1600    -1390687.4880    -1388731.6628
O2    1.3546    7.9889    32.0    0.2497    0.0000    0.0000    0.0000
Ca(OH)2    12.5298    73.8957    74.0    0.9986    -235.5800    -986326.3440    -984936.8032
                        ∑∆Hofreactants  =-2373668.4660

   



Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof,
kJ/day
Mn2O3.H2O    14.9003    87.8760    176.0    0.4993    -222.9000    -933237.7200    -465961.4008
CaCO3    16.9322    99.8593    100.0    0.9986    -289.5000    -1212078.6000    -1210373.7232
CO2    7.4502    43.9383    44.0    0.9986    -94.0520    -393776.9136    -393224.7267
H2O    4.5717    26.9621    18.0    1.4979    -68.3174    -286031.2903    -428444.0120
                        ∑ΔHofproducts = -2498003.8627

ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = –2,498,003.863 kJ/day – (–2,373,668.466 kJ/day)
          = – 124,335.3967 kJ/day
          =  – 15541.92459 kJ/hr

5.5.3    Energy Balance for Calcium Bicarbonate Removal
Ca(HCO3)2(aq)+ Ca(OH)2(aq) → 2CaCO3(c)↓ + 2H2O(l)
Table 5.4 Energy balance for calcium bicarbonate removal
    Reactants                   
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
Ca(HCO3)2    180.0000    1061.5680    162.0    6.5529    -460.1300    -1926472.2840    -12623958.8246
Ca(OH)2    82.2222    484.9136    74.0    6.5529    -235.5800    -986326.3440    -6463285.1936
                        ∑∆Hof reactants = -19087244.0182
   




Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
CaCO3    222.2222    1310.5776    100.0    13.1058    -289.5000    -1212078.6000    -15885231.1923
H2O    40.0000    235.9040    18.0    13.1058    -68.3174    -286031.2903    -3748662.5284
                        ∑∆Hof products = -19633893.7207
ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = – 19,633,893.72 kJ/day – (–19,087,244.0182kJ/day)
          = – 546,649.7025 kJ/day
          = – 68331.21281 kJ/hr

5.5.4    Energy Balance for Magnesium Bicarbonate Removal
Mg(HCO3)2(aq)+ 2Ca(OH)2(aq) → 2CaCO3(c)↓ +Mg(OH)2 + 2H2O(l)
Table 5.5 Energy balance for calcium bicarbonate removal
    Reactants                   
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
Mg(HCO3)2    140.0000    825.6640    146.0    5.6552    -332.1600    -1390687.4880    -7864661.6034
Ca(OH)2    141.9178    836.9744    74.0    11.3105    -235.5800    -986326.3440    -11155809.6894
                        ∑∆Hofreactants = -19020471.2928
    Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
CaCO3    191.7808    1131.0464    100.0    11.3105    -289.5000    -1212078.6000    -13709171.9290
Mg(OH)2    55.6164    328.0033    58.0    5.6552    -221.9000    -929050.9200    -5253995.6835
H2O    34.5205    203.5881    18.0    11.3105    -68.3174    -286031.2903    -3235142.6203
                        ∑∆Hof products = -22198310.2328

ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = – 22,198,310.2328 kJ/day – (–19,020,471.2928 kJ/day)
          = – 3,177,838.94 kJ/day
          = – 397229.8675 kJ/hr

5.5.5    Energy Balance for Magnesium Sulphate Removal
MgSO4(aq) + Ca(OH)2(aq) → CaSO4(aq) + Mg(OH)2(c)↓
Table 5.6 Energy balance for magnesium sulphate removal
    Reactants                   
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
MgSO4    39.2000    231.1859    120.0    1.9265    -325.4000    -1362384.7200    -2624701.3741
Ca(OH)2    24.1733    142.5645    74.0    1.9265    -235.5800    -986326.3440    -1900203.7402
                        ∑∆Hof reactants = -4524905.1143
   
Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
CaSO4    44.4267    262.0109    136.0    1.9266    -336.5800    -1409193.1440    -2714882.1491
Mg(OH)2    18.9467    111.7401    58.0    1.9266    -221.9000    -929050.9200    -1789865.5795
                        ∑∆Hof products = -4504747.7286

ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = – 4,504,747.729 kJ/day – (– 4,524,905.114 kJ/day)
          =  20,157.3857 kJ/day
          = 2519.673213 kJ/hr
5.5.6    Energy Balance for Calcium Sulphate Removal
CaSO4(aq) + Na2CO3(aq) → CaCO3(c)↓ + Na2SO4(aq)
Table 5.7 Energy balance for calcium sulphate removal
    Reactants                   
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof,
kJ/kmol    ΔHof,
kJ/day
CaSO4    102.3382    603.5498    136.0    4.4379    -336.5800    -1409193.1440    -6253810.2616
Na2CO3    79.7636    470.4138    106.0    4.4379    -275.1300    -1151914.2840    -5112041.3593
                        ∑∆Hof reactants =  -11365851.6209
   
Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof, kJ/kmol    ΔHof, kJ/day
CaCO3    75.2487    443.7867    100.0    4.4379    -289.5000    -1212078.6000    -5379044.0218
Na2SO4    106.8531    630.1768    142.0    4.4379    -330.8200    -1385077.1760    -6146785.6442
                        ∑∆Hof products = -11525829.6660

ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = – 11,525,829.67 kJ/day – (– 11,365,851.62 kJ/day)
          = – 159,978.0451 kJ/day
          = – 19997.25564 kJ/hr

5.5.7    Energy Balance for Magnesium Chloride Removal
`    MgCl2(aq)+ Ca(OH)2(aq)  + Na2CO3(aq) → CaCO3(c)↓ + Mg(OH)2(c)↓ + 2NaCl(aq)



Table 5.8 Energy balance for magnesium chloride removal
    Reactants                   
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof,
kJ/kmol    ΔHof,
kJ/day
MgCl2    24.5    144.4912    95.0    1.5210    -189.7600    -794487.1680    -1208383.2030
Ca(OH)2    19.0842    112.5510    74.0    1.5210    -235.5800    -986326.3440    -1500162.0887
Na2CO3    27.3368    161.2215    106.0    1.5210    -275.1300    -1151914.2840    -1752012.8509
                        ∑∆Hof reactants = -4460558.1426
    Products                       
Component    Mass (basis), kg/day    Mass, kg/day    Molar mass, kg/kmol    Amount, kmol/day    ΔHof, kcal/mol    ΔHof,
kJ/kmol    ΔHof,
kJ/day
CaCO3    25.7895    152.0962    100.0    1.5210    -289.5000    -1212078.6000    -1843524.9486
Mg(OH)2    14.9579    88.2157    58.0    1.5210    -221.9000    -929050.9200    -1413049.7845
NaCl    30.1737    177.9524    58.5    3.0419    -97.3240    -407476.1232    -1239510.4173
                        ∑∆Hof products =-4496085.1504
ΔHor = ∑ ΔHof products - ∑ ΔHof reactants
          = – 4,496,085.15 kJ/day – (– 4,460,558.143 kJ/day)
          = – 35527.0078 kJ/day
          = – 4440.875975 kJ/hr

5.5.8    Energy Balance for Calcium Chloride Removal
CaCl2 + Na2CO3 → CaCO3↓ + 2NaCl


Post a Comment

 
Top